Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models
نویسندگان
چکیده
Data from spectrophotometers form spectra that are sets of a great number of exploitable variables in quantitative chemical analysis; calibration models using chemometric methods must be established to exploit these variables. In order to design these calibration models which are specific to each analyzed parameter, it is advisable to select a reduced number of spectral variables. This paper presents a new incremental method (step by step) for the selection of spectral variables, using linear regression or neural networks, and based on an objective validation (external) of the calibration model; this validation is carried out on data that are independent from those used during calibration. The advantages of the method are discussed and highlighted, in comparison to the current calibration methods used in quantitative chemical analysis by spectrophotometry. D 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers
Gaussian processes have received significant interest for statistical data analysis as a result of the good predictive performance and attractive analytical properties. When developing a Gaussian process regression model with a large number of covariates, the selection of the most informative variables is desired in terms of improved interpretability and prediction accuracy. This paper proposes...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملEnsembled Self-Adaptive Fuzzy Calibration Models for On-line Cloud Point Prediction
In this paper we investigate the usage of non-linear chemometric models, which are calibrated based on near infrared (FTNIR) spectra, in order to increase efficiency and to improve quantification quality in melamine resin production. They rely on fuzzy systems model architecture and are able to incrementally adapt themselves during the on-line process, resolving dynamic process changes, which m...
متن کاملMultivariate calibration of near infrared spectroscopy in the presence of light scattering effect: a comparative study
When analyzing heterogeneous samples using spectroscopy, the light scattering effect introduces non-linearity into the measurements and deteriorates the prediction accuracy of conventional linear models. This paper compares the prediction performance of two categories of chemometric methods: pre-processing techniques to remove the non-linearity, and non-linear calibration techniques to directly...
متن کاملEstimating Nitrogen and Acid Detergent Fiber Contents of Grass Species using Near Infrared Reflectance Spectroscopy (NIRS)
Chemical assessments of forage clearly determine the forage quality; however, traditional methods of analysis are somehow time consuming, costly, and technically demanding. Near Infrared Reflectance Spectroscopy (NIRS) has been reported as a method for evaluating chemical composition of agriculture products, food, and forage and has several advantages over chemical analyses such as conducting c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004